ВЕРСИЯ ДЛЯ СЛАБОВИДЯЩИХ
ОРИГИНАЛЬНАЯ ВЕРСИЯ

Идет вторая/четная неделя

2016 10_10_banner_oporn_
06 11_2018_VOPROS
Календарь событий
Август 2019
Пн Вт Ср Чт Пт Сб Вс
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
2017 10_10_baner_jurnala_nauki
novosti_soyuzmash

Команда ученых СибГУ им. М.Ф. Решетнева и КрасГМУ им. проф. В.Ф. Войно-Ясенецкого разработала уникальную интеллектуальную систему определения степени тяжести перитонита

 Исследовательская группа кафедры системного анализа и исследования операций Института информатики и телекоммуникаций Сибирского государственного университета науки и технологий имени академика М.Ф. Решетнева совместно с коллегами кафедры общей хирургии имени профессора М.И. Гульмана КрасГМУ им. проф. В.Ф. Войно-Ясенецкого разработала уникальную интеллектуальную систему определения степени тяжести перитонита. Основное назначение разработанной системы - обеспечить оперативную оценку степени тяжести перитонита по показателям крови и исследованиям брюшной полости.

«В связи с ростом ургентной хирургической патологии усиливается необходимость в применении систем и моделей для ранней диагностики заболеваний. Важную роль в обеспечении точности постановки диагноза играют методы и способы математического моделирования. В результате тесного сотрудничества медиков и специалистов в области системного анализа была создана программа, позволяющая быстро и качественно оценить тяжесть состояния пациентов, а также сформировать схему адекватной терапии. Созданная модель получила высокую оценку в диагностике пациентов с диагнозом перитонит, позволяющая экстренно диагностировать степень патологического процесса», - отмечает кандидат медицинских наук, ассистент кафедры общей хирургии имени профессора М.И. Гульмана Дябкин Евгений Владимирович.

В основу интеллектуальной системы положены алгоритмы эволюционного поиска и деревья принятия решения. Для этой задачи медиками была построена база данных, содержащая сведения о протекании заболевания, собранная по историям болезни пациентов. На основе этих данных сотрудниками кафедры системного анализа и исследования операций СибГУ им. М.Ф. Решетнева была построена интеллектуальная система, показавшая 100% точность на тестовых данных. Разработанная модель была реализована в виде программной системы и передана на кафедру общей хирургии имени проф. М.И. Гульмана, где прошла дополнительную апробацию и также показала 100% точность диагностики.

«Примечательно, что для выполнения аналогичной диагностики врач использует 13 различных показателей, нашей системе понадобилось всего 4 из них. Таким образом, ценность полученного результата является не только практической, но и теоретической. Исследуя причины такой разницы, специалисты медицинской диагностики могут получить новое знание. Например, знание о том, что эти показатели тесно связаны между собой и не требуется собирать все 13 показателей при принятии решения. Поиск новых знаний в области медицинской диагностики - это огромное преимущество систем искусственного интеллекта», - рассказывает доцент кафедры системного анализа и исследования операций Института информатики и телекоммуникаций СибГУ им. М.Ф. Решетнева  Липинский Леонид Витальевич.

Дальнейшим направлением работы исследовательской группы СибГУ им. М.Ф. Решетнева и КрасГМУ им. проф. В.Ф. Войно-Ясенецкого является формирование новых диагностических моделей и объединение их в единую информационно-аналитическую систему. Разработка таких систем является одним из наиболее перспективных подходов к решению современных задач медицины, таких как повышение уровня персонализации и разработка новых форм превентивной и предиктивной медицины.

2017 10_31_lipinskiy  2017 10_31_dyabkin 

На главную